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NOMENCLATURE a2 a2 

af’ 4r 

defined by (A.3) and (AS), respectively ; 
h, depth of porous medium; dimensionless horizontal temperature 

a, characteristic grain diameter; gradient ; 
K, permeability of porous medium ; Y. coefficient of volume expansion ; 

6 acceleration of gravity; 6 parameter defined by (5.3); 

CP, specific heat at constant temperature; 8, dimensionless temperature; 
x, y, z, dimensionless Cartesian coordinates; x,( = &,,/(c,P)~), thermal diffusivity ; 
i, j, k, unit vectors ; 1 WP thermal conductivity; 
1, dimensionless time; “, kinematic viscosity; 
u( = u, u, w), dimensionless velocity vector; P9 density; 
U(y), T(y), P(x, y), dimensionless basic flow ve- po, standard density ; 

locity, temperature and pressure, res- 0, amplification factor of disturbance; 
pectively ; $9 potential defined by (3.3); 

‘I dimensionless temperature; 8, defined by (3.8). 

7% standard temperature; 
AT*, temperature difference between lower Subscripts 

and upper plane; J fluid ; 

P? dimensionless pressure; m, solid-fluid mixture; 

K dimensionless heat flux ; 14 vertical. 

k, m, dimensionless wave numbers in the x 
and z direction; 

Superscripts 
* 

Vz( = az/ayz + V:), Laplacian operator ; 
dimensional quantities; 

A 

operator defined by (3.3); 
perturbation quantities; 

* 

operator defined by (A.l) ; 
y-dependent part of linear per- 

operator defined by (A.7); 
turbations ; 

Reynolds number ; 
r. real part ; 

Prandtl number v/x,,, ; 
1, imaginary part ; 

Rayleigh number KgyA T*h/x,v ; 
C, critical. 

A, 
L, 
M 
Re, 
PC 
RU, 
Raf, 
A, 
KE, F, 
u, 

Greek letters 
a, 

defined by (5.5); -. ..- 1. INTRODUCTION 
amplitude of disturbance; BUOYANCY driven convection in a porous medium has 
defined by (4.2) and (4.4), respectively ; 
defined by (3.8). 

several important geophysical and technical applica- 
tions. Thus, geothermal activities in certain areas of 
the world may be attributed to this phenomenon [l]. 

dimensionless overall wave number ; It also may be present in natural gas reservoirs [2]. 
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Abstract-The stability of convection in a horizontal porous layer subjected to horizontal as well as 
vertical temperature gradients is investigated. The boundaries are taken to be perfectly conducting and the 
horizontal temperature gradient is assumed to be small. The analysis shows that the critical Rayleigh 
number is always larger than for the ordinary Bknard problem in a porous medium. The preferred mode of 
disturbance is stationary, being longitudinal rolls, i.e. rolls having axes aligned in the direction of the basic 
flow. This particular mode minimizes the potential energy. Assuming that the initially preferred mode also 
dominates at supcrcritical Rayleigh numbers, a finite amplitude solution is obtained. The vertical heat flux 
is computed to second order. Compared with B6nard convection in a porous medium, the perturbation 
heat flux is diminished. The flux due to the basic flow is increased, however, so the total vertical heat flux is 

increased. 



242 JAN EKIK WEBER 

Techni~Iy this phenomenon is im~rianf as it 
may occur in porous insulation of buifdings, thereby 
increasing the loss of heat. 

The present paper is concerned with free convection 
in a horizontal porous layer, where the ratio of 
height to length is sm& When uniformly heated fram 
below. this model has been ~v~~ga~~ by several 
authors during the past thirty years or so. Especially 
in the last Sew years considerable efforts have been 
made in understanding this subject. 

In a physical problem, however, strictly uniform 
heating generally does not occur. Thus, horizontal 
as well as vertical temperature gradients wih be 
present. For thin viscous tayers this problem has 
motivated some previous investigations, wherevarious 
lateral heating conditions have been used. Mast 
recently Weber [3] has made an analysis of this 
problem, assuming that the temperature varies 
finearly along the boundaries, while the vertical 
temperature difference is kept constant. In the present 
paper this model is applied to convection in a porous 
medium leading to a nearly similar stability problem. 

In the last part of the paper the analysis is extended 
to the nonlinear regime. Considering the initially 
preferred mode a finite arn~~~tud~ solution is obtained, 
The vertical heat fiux is examined to second order, 
and the result is compared with ordinary porous 
convection due to uniform heating from below. 

a porous medium which, for example, may be com- 
posed ofclosely packed grains, completely surrounded 
by a homogeneous fluid. The medium is bounded 
horizontally by two impermeable planes separated by 
a distance h, which is assumed TV be small compared 
to the ~hara~terjs~~ hor~zo~t~ Dimensions As in 
133 the boundaries are taken to be perfect heat 
conductors, and to have a linear temperature variation 
in the x*-direction, see Fig. 1. For a given x*-coordi- 
nate the temperature difference between the planes 
is constant, AT*, and the lower plane is the warmer, 

L\\\\\\\\~\\~\\\\\~~\\\\\~\\\\\\~ 

tX* 
Porous 
medium 

\\\\V 

FIG. 1. Temperature distribution in the model. fl* is a 
positive constmt. 

The system (2.2)--(2.4) permits a particular, steady 
solution. Setting 

&$?t = t> = W = 0 
(2.r) 

li = U@), T-I&)-& 

the governing equations reduce ta 

DU(y) = fiRa 
(2.6) 

Lf2 Tfvf = -_ BUM 

We introduce dj~ens~on~ess v~nables by choosing 

h, (o,&?),@i&, KJh, AT*,P,vK,JK (2.V 

as units of length, time, velocity, temperature and 
pressure, respectively. 

Making the Boussinesq approximation, the govern- 
ing equations may be saritten in d~mens~on~~s form 

vp + v - RaTd’ = 0 (2.2) 

Q*u=O (2.3) 

X!+j&+a-VT-Q’T=O. (24) 

For details concerning the ~e~vat~~n of &e heat 
equation in a porous mediumS we refer to Ratto and 
Masuoka [4]. 

where 

5 = d/dy, 

In a porous medium we have no restriction on the 
tangential velocity at a rigid boundary. However, 
the mass must be conserved, and hence 

j; U(Y)dY = 0. (X.79 

For the temperature at the boundaries we must 
require 

?u+&= cr-_& (2.8) 

The sohrtion of (2.6)-(Z.s) is easiiy obtained, being 

This solution is valid asym~tot~~a~~~, i.e-. when the 
ratio of the depth to fhe length apprucahes zero, 

Formally ,8 and Ra are independent parameters. 
It is obvious, however, that the solution (2.9) is not 
stable for all. values of these parameters. For example, 
when Ra is sufficiently increased, convection will 
occnr, and a secondary flow develops. However, 
there is also another point which shouId not be over- 
looked. ft is well known that for Darcy’s law to be 
valid in its present form, the (particle) Reynolds 
number should not exceed unity. 



We define a Reynolds number 

Re - U*,a,d 
v 

(2.10) 

where the operator A isdefined by (3.3), and the bound- 
ary conditions being that 

where d is the characteristic (dimensional) grain 
diameter. Substituting U”,, = /?Rax,,J2h from (2.1) 
and (2.9) we get as a necessary condition for (2.9) to be 
valid that 

$I = V=$ = 0 

Further we have defined 

fory = +$. (3.7) 

u I U(y)/flRa = y 
(3.8) 

0 = (Z(y) + y)/f12Ra = &$y - y3). 

fiRac2Pr 
i! 

f -’ 
h 

(2s 1) 

where Pr is the Prandtl number. 
For the vertical heat flux due to the basic flow we 

obtain from (2.9) 

H” = - E! 
( > ay y=_f 

= 1 + &#Rn. (2.12) 

From this we notice that the presence of fi increases 
the heat transfer. 

For fi = 0, (3.9 reduces to the equation for ordinary 
Benard convection in a porous medium, a problem 
which is well known. The inclusion of a horizontal 
temperature gradient, however, complicates the prob- 
lem considerably. In the present paper we shall there- 
fore restrict ourselves by assuming that /3 is a small 
parameter. As usually in problems of this type, we 
consider in~nitesimal perturbations. Neglecting terms 
of order $I~ in (3.9, and introducing 

3. TREASON ANALYSIS 

Perturbating the velocity, temperature and pressure 
fields, the resulting field variables may be written 

0 = V(y)i I- %(x, y, z, t) 

e = T(y) - px + 8(x, y, 2, t) (3.1) 

p = P(x, Y) + PC% y, GO 

where P(x, y) is pressure in the basic flow. 
From (2.2) we obtain 

Vp + v - Ra0j = 0 (3.2) 

where the carets have been dropped. We observe that 
j 1 (V x of = 0. Since we also have V *v = 0, the 
velocity is a poloidal vector and can be expressed by 
a single scalar function I++ as 

v=Vx(V xj$)=A$ (3.3) 

or explicitly 

$ = t&y) exp (i(kx + mz) + at) (3.9) 

where k and m are real wave numbers in the x- and 
z-direction, respectively, and CT = G’ + id is the 
complex growth rate, the ~rturbation equation may 
be written 

((Dz - a’)* - a2Rac}$ = o(D2 - a”)$ 

+ ik@Ra’{ @D2 - a’) + D>$ - (aflRa?2D~$ 

to be solved subject to 
(3.10) 

$=D”$=O fory= +i. (3.11) 

Here a is the horizontal overall wave number defined 
by a’ = kZ + m2, and Rd the critical Rayleigh 
number corresponding to the onset of convection. 

The solutions will be obtained by a series expansion 
after /I as a small parameter, as in [3 1. This procedure 
is analogous to those previously applied in [S] for 
convection in Couette flow and in [6] for convection 
in a tilted slot. 

We introduce the series expansions 

in* v, w> = +ikv, - V% Jk& (3.4) 

where V: is the two-dimensional Laplacian. 
From (3.2) the perturbation temperature is given by 

B = - $VZ$_ (3.5) 

Introducing $ into the heat equation, we finally 
obtain 

Rd = f B”R,, k = f B”k,, 
n=O n=O 

m = f pm”, CT = f /YcT, (3.12) 
n=0 n=o 

where I&, = D2$, = 0 for y = &. 

By substituting these expansions into (3.10) and 
equating equal powers of /I, an infinite set of inhomo- 
geneous differential equations is obtained. R,, R,, 
R,,... are found from the solvability conditions for 
these equations, and the wave number terms k,, 
m,, kI, m, . . . are determined so that they minimize 

+ ~‘~a2D~V~~ + A+. VV2Jr (3.6) the critical Rayleigh number. 

V”+ + RaV$$ = V’I@~ + PRa[i7V2$, + $.J 

Convection in a porous medium 243 
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We may do some preliminary simplifying obser- 
vations. Changing the sign of p in (2.5) merely leads 
to a reverse ofthe direction of the basic flow. Physically 
this cannot alter the stability conditions, i.e. the 
critical Rayleigh number and the corresponding 
wave number. Hence Ra’, k and m should not contain 
odd powers of b, or 

Rri+i = kzi+i = m2i+i = 0, i = 0, 1,2,. . (3.13) 

We consider the transition from stable to unstable 
solutions. This transition goes through a neutral 
state, characterized by or = 0. Generally we cannot 
prove that the principle of exchanges of stabilities 
(PES) is valid, i.e. that the neutrally stable solutions 
are stationary. However, when /? is small enough for 
the series (3.12) to converge, this can be proved. For 
the zero-order system (fi = 0), PES is obviously valid, 
implying &, = 0. Further the solution must be 
even, since the boundary conditions are. Owing to the 
uneven character of the operator (B(D2 - a2) + D) 
appearing on the right of (3.10) and the fact that 
Rd must be real, we immediately obtain from the 
solvability condition in the following orders that 
cr\ = 0, cr\ = 0 and so on. Hence oscillatory instability 
does not occur, and we may put u = 0 in (3.10). 

The set of equations obtained from (3.10) with /I as 
ordering parameter are given in the appendix. 

The zeroth-order system corresponds to convection 
without shear, and the solution may be written 

5, = Acos~ly (3.14) 

giving a minimum Rayleigh number 

R, = 4rr2 for ut = ki + rn% = n2. (3.15) 

The zeroth-order system is easily shown to be self- 
adjoint. Hence the condition for the higher order 
equations to have a non-trivial solution may be 
stated as 

0fLJ&) = 0, n = 1,2,3,. . . (3.16) 

where the brackets denote integration from y = - $ to 
y = +&, and the operator L is defined by (A.l). 

In order to avoid the arbitrary homogeneous 
solution which always can be added in each order, 
we choose as a normalization condition 

<5&J> = 3. (3.17) 

Hence, from (3.14), A = 1. 
From (A.2) the evaluation of the first order solution 

is straightforward, giving 

(3.18) 

Applying the solvability condition to the second- 
order equation (A.3) we obtain 

R2 = 4x2 + 3k;. (3.19) 

Thus we observe that a disturbance given by k,, = 0, 
and hence m, = K, minimizes R,. This particular 
disturbance defines a longitudinal roll. Then, in a 
physical problem, as the critical Rayleigh number is 
approached from below, a longitudinal roll first 
starts to grow exponentially. Accordingly it constitutes 
the preferred mode among the infinite number 
initially present. 

Unfortunately, the first term on the right-hand 
side in (A.3), being proportional to a:, vanishes 
identically. We therefore must proceed to fourth order 
to obtain a correction on the critical wave number. 

Substituting (3.19) into (A.3), we may calculate 

$2, which is an elementary, but lengthy task. The 
result is given in the appendix. 

Since we already have shown that longitudinal rolls 
will be preferred, it is physically relevant to put 
k, = 0 in the remaining analysis. This means 5, = 0. 
The third-order equation then reduces to that 
previously derived in first order when substituting k2 
for k,. Accordingly the solution may be written 

4, + [_; sin ny + y cos 7ry + ny2 sin 7ry . 
I 

(3.20) 

Applying now the solvability condition (3.19 to 
the fourth-order equation (AS), we obtain after some 
algebra 

R, = 4m$ + Ri [&+&l-q 
3 

- -- tgh (r&/3)/2) . 
16(J3)x 1 (3.21) 

From this it follows that R,, has a minimum for m, = 
0. Accordingly, the critical Rayleigh number to fourth 
order may be written 

Ra’ = 4x2(1 + /32 + l-7384 + . . *) 

and the critical wave numbers 

(3.22) 

k = ‘W2) (3.23) 
m = K + 0(fi4). 

We observe that Ra’ is always larger than for 
ordinary convection in a porous medium. Physically 
this is due to the presence of warm fluid above cold 
fluid in the basic flow. 
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4. ENERGY CONSIDERATIONS 

In order to gain some physical insight into why 
longitudinal rolls should be preferred, we consider the 
equation for the kinetic energy of the perturbation. 
In a porous medium shear instabilities do not occur 
owing to the lack of inertial terms in the equation for 
momentum transfer. The mechanism selecting the 
preferred mode must then be purely thermal. 

Taking the real part of (3.2) multiplying by the 
real part of u, averaging over a wave length in the 
x- and zdirections, and integrating from y = -f to 
y = +$ using the boundary conditions, we readily 
obtain 

(7) = Ra(i8) (4. I) 

where the bar and the brackets denote mean and 
vertical integration, respectively. 

This equation expresses a balance in the pertur- 
bation energy between the gain from potential 
energy and the loss by the viscous dissipation. In a 
porous medium, however, the latter is directly 
proportional to the averaged kinetic energy of the 
perturbation. Hence we may write 

KE = ,(p) = $Ra(;B) = )(Vf$V’$) (4.2) 

where we have substituted from (3.4) and (3.5). 
To second order in the marginal stable solutions, 

the above expression reduces to 

KE = f - /?2 ;(&(D’ - x2)&). (4.3) 

From (3.18) it follows that $1 may be written 

& = k,F(y) where F( -+$) = D2F( +*) = 0. (4.4) 

Accordingly 

KE = ; + /I” ;k;<(Dn’ + x2F2). (4.5) 

The last term is obviously positive. Hence we may 
conclude that, among all marginally stable solutions, 
the preferred mode (k, = 0) will have minimum 
kinetic energy (or, more precisely, minimum dissi- 
pation). Since KE is directly proportional to the 
released potential energy, we further conclude that the 
preferred mode is characterized by minimum potential 
energy. Equivalently, that particular mode which 
involves least possible energy conversion, will be 
selected. 

5. FIMTE AMPLITUDE SOLUTION 

In the previous sections we have demonstrated that 
a preferred mode of disturbance is predicted from 
linear theory. Since this particular disturbance is 

the fastest growing, it also will dominate the motion at 
slightly supercritical Rayleigh numbers, suppressing 
the growth of other unstable modes in this region. 
Accordingly, we look for a stationary solution of the 
nonlinear problem considering longitudinal modes 
only. 

Setting i?/& = 8/2x = 0, (3.9 reduces to 

V”rj + RaV;rj = /32Ra2D@Vfrj + A$. VV’$. (5.1) 

This equation will be solved by a two-parameter 
expansion, and the solution may be written 

+ = f cmg.@mn) (5.2) 
m=l.n=O 

provided the series converge. Since /I appears only as 
squared in (5.1), the summation can be taken over 
even n. The parameter c will be defined by 

Ra - Ra’ 
E2 =-_ 

Ra 
(5.3) 

which is analogous to the definition originally 
proposed by Kuo [7] for a similar problem. In the 
present case, however, Rd is a function of 8, given by 
(3.22). We note that E is always less than one. 

Equation (5.3) may also be written 

Ra = FF = Ra’ + Ra:(c2 + c4 + . . + ~~3 (5.4) 

where 

Ra: = RaC/(l - 

When solving to second order, 
fourth order s = 2 and so on. 

E2”). (5.5) 

we choose s = 1, to 
By writing Ra as a 

“finite” sum, we are, to every order, working with a 
correct Rayleigh number. It appears that this pro- 
cedure highly improves the convergence of the 
solution (Kuo [7], Palm et al. [8]). 

Substituting the expansions (5.2) and (5.4) into 
(5.1) and using 6 and /? as ordering parameters, we 
obtain an infinite set of equations. In this procedure 
t and fi appear as given small parameters. Expanding 
the amplitude A of the solution after E and /I, the 
A, will be determined at each order so as to satisfy 
the solvability conditions. 

To order el, Do the y-dependence of the solution is 
given by (3.14). For a longitudinal roll we then write 

lj”O’ = A,, cos I[y cos AZ (5.9 

where we have chosen m = rc, since this is the phy- 
sically relevant wave number for Ra > Rd. 

The solution to order E’, p” is easily obtained (see 
the appendix for details). From (A.7) we find 
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* (20) = A n&o 
,,cos7Tycosm + 16 ~ sin 27ry. (5.7) 

The result to order t6, /?’ has in fact been computed in 

PI. 
The unknown amplitudes are determined from the 

solvability condition, giving 

4 Ros + 
A,, = -~ , 

0 n Ro 
A,, = 0 (5.8) 

where R,, = R,/(l - ~‘9. 
In the present paper we study the change of the 

vertical heat transport due to the inclusion of a small 
horizontal temperature gradient. By averaging the 

stationary heat equation (2.4) and utilizing that u is 
periodic, i.e. u = 0, we obtain by integration 

A = -(D@,,_, (5.9) 

where E) is the perturbation heat flux. Accordingly the 

total vertical heat flux may be written 

H=H,+If=l+l$‘Rn 

where we have substituted for H, and Q from (2.12) 
and (3.5), respectively. 

In [8] the Nusselt number (which corresponds to 
H(/l = 0)) has been obtained to sixth order. However, 
when the horizontal temperature dependence is 

taken into account, the inhomogeneous differential 
equations derived in each order, very soon become 
unsuitable for analytical treatment. We shall therefore 
not push the computations further than necessary to 
obtain a correction on the second-order heat flux. 

To achieve this goal, we must solve the system of 
equations to order e3, b2. 

To order t’, p2 the equation is identical to (A.3). 
Including the z-dependence and adding a homo- 
geneous solution, we may write 

$(12) = A,, cos ny cos nz + A,,$, cos nz (5.11) 

where $2 is given by (A.9 with k, = 0. 
Having in mind the large number of terms in @“‘, 

the evaluation of rj(22) from (A.8) obviously is a long 
and tedious task. However, it can be shown that 
$2 is approximated within a few percent by the first 
term in a rapidly converging series expansion 

,? czn+, cos (2n + 1)ny. It turns out that c3 = -&. 
“=I 
Accordingly we take 

ti (I21 = A,, 
,410 

cos ny cos 772 - - cos 37cy cos 7rz 
32 

(5.12) 

in the following analysis. 
By substituting (5.12) into (A.8) we get 

* (22)= A22~o~liy~osn;+~(A,oA,2 -$) 

x sin2ny-- 128 [+ sin 471~ + 4 sin 2ay cos 2nz 

+ h sin 47ry cos 2nz] (5.13) 

where we have utilized that A,, = 0. 

Applying the solvability condition to order t3, flz, 
see (A.9), we finally obtain 

A,, = -&A,,. (5.14) 

The fact that A,, and A,, have opposite sign, means 

that the horizontal temperature gradient acts to 
diminish the magnitude of the velocity. Physically 
this is due to the stabilizing configuration in the basic 

flow, where the average density in the upper part is 
less than in the lower. 

The perturbation heat flux to this order may now 

be written 

+ 2p2D3p*2)]y= -*. (5.15) 

Substitution from (5.8), (5.13) and (5.14) yields 

fYj = 2 R?’ (1 - g fly, 0 (5.16) 
RCl 

From this we observe that the presence of fi reduces 

the perturbation heat transport. However, as noted 
from (2.12). /I serves to increase the heat transfer due 

to the basic flow. In total the latter effect predominates, 

3- 

H 

0 Ro 
IO0 

Ra 

FIG. 2. The total vertical heat flux H vs Ra for various values 
of (dimensionless) b. 
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and hence the heat flux is increased. This becomes 
clear from Fig. 2 where H = H, + I? is plotted 
against Ra for various values of j?. We then conclude 
that the introduction of a small horizontal tempera- 
ture gradient into the classic Mnard problem leads to 
an increase of the total vertical heat flux. In the 
calculation of fi we have used s = 1, which gives the 
best approximation to this order. The breaks in the 
slope of the heat transport curves in Fig. 2 indicate 
when convection commences, and the figure clearly 
exhibits the stabilizing effect of fi, as mentioned in 
section 3. 

6. SUMMARY AND CONCLUDING REMARKS 

According to the results presented above, the 
Rayleigh number at the neutral state will have a 
minimum value for steady longitudinal rolls with axes 
aligned in the direction of the basic flow. The critical 
Rayleigh number will always be larger than that 
corresponding to convection with uniform heating 
from below. These conclusions are similar to those 
reached in [33 for a viscous fluid in the limit of infinite 
Prandtl number. 

The instability is of thermal origin, and among the 
marginally stable solutions the preferred mode has 
minimum potential energy. 

Assuming that the initially preferred mode also 
dominates at moderately supercritical Rayleigh num- 
bers, a stationary finite amplitude solution is obtained. 
The vertical heat flux is examined to second order, 
and a small horizontal temperature gradient /I is 
found to diminish the vertical perturbation heat 
transport. The heat transfer due to the basic flow is 
increased, however, so the total vertical heat flux is an 
increasing function of /I 

Before closing, we note that by working with super- 
critical Rayleigh numbers, rolls having axes tilted a 

small angle to the basic flow become linearly unstable. 
Such modes may be considered as perturbations to 
our stationary solution. When p is zero, it can be 
shown analogously to [9] that the stationary roll is 
stable. For non-zero fi the stability problem becomes 
more complex, and should probably be attacked 
numerically. This will be left for future work, 
however. 

Finally we remark that the inclusion of lateral 
side-walls may influence the selection of mode. 
Presumably an increase of the aspect ratio (height to 
length) should favour transverse rolls, i.e. rolls with 
axes normal to the basic flow: 
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APPENDIX 

By substituting (3.12) into (3.10) we derive the following 
set of equations 

O(/?o):~, = ((II’ - a$” - aiR,}$, = 0 (A.1) 

O(j’):L$I = ik,R,( if(D’ - a@ + D}$, (A.2) 

O(/?z):L$2 = {a:(2(D” - a@ + R,) + a:R, 

-agRzDo}$, + ik,R,( 8(D2 - ai) + D}$I 

(A.3) 

where a: = 2(k,k, + m,,mZ). 

Assuming k. = 0 (longitudinal rolls) we further obtain 

0(/13) :I.$s = ik,R,{ u(D’ - af) + D}$, (A.41 

qfi4) :L$, = {2a$(DZ - a@ + a$R, - at + a;R, 

+ a;R, - a:RgDa - 2a~R,R,D~}$, 

+ {2a$(D* - a@ + a:R, + a:R, 

- agRgDG}$, (A.? 

where now U: = rni = nz, a2 = 2m m 
2m,m, and R, = R,, = 4~‘. 

2 o 2, ct: = k: + rni + 

These equations are subject to the boundary conditions 
5. = D”$, = 0 at y = &. The solutions of (A.l) and (A.2) 
are given by (3.14) and (3.18), respectively, while (A.3) is 
evaluated to give 

$2 = aI cos ny + a2 cash [rr(J3)y] + a,y sin ny 

+ a,y2 cos ny + a,y3 sin xy + n,y4 cos ny (A.6) 

where 
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7r3 k;r kin2 
a,= ----. = 

3 4’ 
a6 --. 

8 

By substituting (5.2) where I(/‘““’ = V2~@‘nt = 0 at y = ri, 
into (5.1). we obtain 

O(c=. a”, :,14$‘20’ E (V4 + R,V;)@“” = AI@~‘). VV’$“” 

(A.3 

o(c=, fl=) :M$‘22’ = (-R, + R$D@V:$‘20’ 

+ A$“o’. VV2+“2’ 

+ A$$‘=‘. VV=,#ic’ (A.8) 

0(t3, fi2) :M+V3=’ = (-R,, + ~R,R,,D~)V~I~“~’ 

- Ro,V;tj’12’ + (-R, + R2D@V2$-‘30’ 0 1 

+ A,j,Clo,.VV=$'22'+ A,j'=2'.VV=,)W') 

+ A4,(1=,.VV=$'=0' 

+ A,j(=O), VV=$"=' (A.9) 

where R,, = R,, = R,/(l - t”). 
The solutions of (A.7) and (A.8) are given by (5.7) and 

(5.13) respectively. 

CONVECTION DANS UN MILIEU POREUX AVEC DES GRADIENTS DE 
TEMPERATURE HORIZONTAUX ET VERTICAUX 

RCumLOn &die la stabilite de la convection dans une couche poreuse horizontale soumise aussi bien 
a des gradients de temperature horizontaux que verticaux. Les front&es sont choisies parfaitement 
conductrices et on suppose petit le gradient de temperature horizontal. L’analyse montre que le nombre 
de Rayleigh critique est toujours plus grand que dans le probltme ordinaire de BCnard dans un milieu 
poreux. Le mode prefere de perturbation est stationnaire, avec des rouleaux longitudinaux, ayant des axes 
align& dans la direction de I’tcoulement de base. Ce mode particulier minimise l'tnergie potentielle. En 
supposant que le mode prefer& initialement est aussi dominant aux nombres de Rayleigh supercritiques, 
on obtient une,solution a amplitude finie. Le flux de chaleur vertical est calcule au second ordre. Compare 
a la convection de Benard dans un milieu poreux, le flux thermique de perturbation est diminue. Le flux 

dfi a I’tcoulement de base est augment& de telle sorte qu’il en resulte un flux thermique vertical accru. 

KONVEKTION IN EINEM PORt)SEN MEDIUM MIT HORIZONTALER UND 
VERTIKALER TEMPERATUfiNDERUNG 

Zusammenfassung- Es wird die Stabilitiit der Konvektion in einer horizontalen porbsen Schicht unter- 
sucht, die sowohl von horizontalen als such von vertikalen Temperaturlnderungen abhangig ist. Die 
RLnder sollen vollkommen leitend sein und die horizontale Temperaturtiderung sol1 klein sein. Die 
Analysis zeigt, dass die kritische Rayleigh-Zahl immer grosser ist als die ftir das gewdhnliche Benard- 
Problem in einem poriisen Medium. Die bevorzugte Art der StrBmung ist station&r, da es sich urn Longitu- 
dinal-Wirbel handelt, d.h. Wirbel deren Achsen in Grundstromungsrichtung liegen. 

Diese besondere Art bringt die potentielle Energie auf ein Minimum. Vorausgesetzt, dass die anfangs 
bevorzugte Art such bei superkritischen Rayleigh-Zahlen dominiert, erhalt man eine endliche Amplituden- 
Losung. Der vertikale Wlrmestrom wird bis zur zweiten Ordnung berechnet. Verglichen mit der Benard- 
Konvektion in einem poriisen Medium wird der Strijmungswarmestrom vermindert. 1st jedoch der Strom 

infolge der Basisstrijmung verstlrkt, so wird die gesamte vertikale Wiirmestrbmung verstlrkt. 

KOHBEKHHR B IIOPHCTOm CPEQE C I’OPH30HTAJIbHbIMH Ii 
BEPTBKAJIbHbIMH PPAAHEHTAMH TEMIIEPATYPbI 

AHaoTaqHJr-l?ccneAyeTc~ yCTOi%WIBOCTb KOHBeIFQMll B rOpM30HTaJIbHOM IIOpHCTOM CJIOe IIpH 

HaJIRWGI KaH rOPM30HTaJIbHbIX, TaK II BepTMKanbHbIX rpaAMeHTOB TeMIIepaTypbI. TpaHIlqbI 

cwTaIoTcfl HneanbHo II~OB~ARUJHMH, a ropM3oHTanbHbIti rpankIeHT TeMnepaTypbI npennona- 

~aeTCRHe3Ha'iI4TeJIbHbIM.haJI83IIO~a3bIBaeT,YTO IEpEITIPIeCKOe9RCJIO PeJIeRB3TOM CJIyYae 

Bcerna 6onbme, 9eM B cnyqae 11p0CT0ti RanasH IjeHepa w~ff 110pCllTOfi CpeabI. npeo6naAaeT 

CTaIJEIOHapHbIti pe?tiMM BO3MyIIJeHHfi B BMJ(e IIpOAOJIbHbIX BaJIOB, T.e. BaJIOB, OCLl KOTOpbIX 

HaIIpaBneHbI BROJIb OCHOBHOPO TeqeHI4J-I. klMeHH0 IIpK TaKOM BHAe TeqeHLlfi IIOTeHqHaJIbHaH 

3Hepran MMHIwanbHa. B npefinonoxteuuu, YTO 3~0T pexcuM rauirie npeo6naRaeT nprs 
csepxupnrusecuux qucnax Penen, IIOJIyYeHO pemeHlle RJIFI KOHeYHOfi aMIIJIMTyAb1. BepTw 

KanbHbIfi TeIIJIOBOti IIOTOK paCCWiTaH A0 BTOpOrO IIOpHRHa. n0 CpaFJHeHI'IIO C HOHBeKI@lei 

BeHapa B IIOpHCTOfi Cpene B03MyII,eHHbIi% TeIIJIOBOft IIOTOH Ir AaHHOM CJIy'Iae cna6ee. OAHaHO 

TeIIJIOBOff IIOTOK BCJIesCTBPIe OCHOBHOI'O Te'IeHHR BOspaCTaeT, qT0 AaeT 60abnmM CyMMapHbIti 

TennoBom nOTOIE. 


