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Abstract—The stability of convection in a horizontal porous layer subjected to horizontal as well as
vertical temperature gradients is investigated. The boundaries are taken to be perfectly conducting and the
horizontal temperature gradient is assumed to be small. The analysis shows that the critical Rayleigh
number is always larger than for the ordinary Bénard problem in a porous medium. The preferred mode of
disturbance is stationary, being longitudinal rolls, i.e. rolls having axes aligned in the direction of the basic
flow. This particular mode minimizes the potential energy. Assuming that the initially preferred mode also
dominates at supercritical Rayleigh numbers, a finite amplitude solution is obtained. The vertical heat flux
is computed to second order. Compared with Bénard convection in a porous medium, the perturbation
heat flux is diminished. The flux due to the basic flow is increased, however, so the total vertical heat flux is
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1. INTRODUCTION

BuoyaNcy driven convection in a porous medium has
several important geophysical and technical applica-
tions. Thus, geothermal activities in certain areas of
the world may be attributed to this phenomenon [1].
It also may be present in natural gas reservoirs [2].
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Technically this phenomenon is important as i
may occur ip porous insulation of buildings, thereby
increasing the loss of heat.

The present paper is concerned with free convection
in a horizontal porous layer, where the ratip of
height to length is small. When uniformly heated from
below, this model has been investigated by several
authors during the past thirty years or so. Especially
in the last few years considerable efforts have been
made in understanding this subject.

In a physical problem, however, strictly uniform
heating generally does not occur. Thus, horizontal
as well as vertical temperature gradients will be
present. For thin viscous layers this problem has
motivated some previous investigations, where various
lateral heating conditions have been used. Most
recently Weber [3] has made an analysis of this
problem, assuming that the temperature varies
linearly along the boundaries, while the vertical
temperature difference is kept constant. In the present
paper this model is applied to convection in a porous
medium, leading to a nearly similar stability problem.

In the last part of the paper the analysis is extended
to the nonlinear regime. Considering the initially
preferred mode, a finite amplitude solution is obtained.
The vertical heat flux is examined to second order,
and the result is compared with ordinary porous
convection due to uniform heating from below.

2. GOVERNING EQUATIONS AND BASIC SOLUTION

Consider natural three-dimensional convection in
a porous medium which, for example, may be com-
posed of closely packed grains, completely surrounded
by a homogeneous fluid. The medium is bounded
horizontally by two impermeable planes separated by
a distance &, which is assumed {0 be small compared
to the characteristic horizontal dimensions. As in
[3] the boundaries are taken to be perfect heat
conductors, and to have a linear temperature variation
in the x*-direction, see Fig. 1. For a given x*-coordi-
nate the temperature difference between the planes
is constant, AT™, and the lower plane is the warmer.
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Fic. 1. Temperature distribution in the model. p* is a
positive constant.

Jan Ewrix WEBER

We introduce dimensionless vuriables by choosing
B AC, DY Ay Ko/ P AT*, povx, /K n

as units of length, time, velocity, temperature and
pressure, respectively.

Making the Boussinesg approximation, the govern-
ing equations may be written in dimensionless form

Vp+v—RaTj=0 22
Vip=0 (2.3)
8T/ét + v-VT ~ V3T = 0. (2.4)

For details concerning the derivation of the heat
equation in & porous medium, we refer to Katto and
Masuoka [4].

The system (2.2)—(2.4) permits a particular, steady
solution. Setting

gt =p=w=0

2.5
u = U{y}, T= Ty} ~ Bx
the governing equations reduce to
DU(y) = fiRa (2.6)

DTy = - BUG)
where
D = d/dy.

In a porous medium we have no restriction on the
tangential velocity at a rigid boundary. However,
the mass must be conserved, and bence

+3

I& Uy = 0. 2.7
For the temperature at the boundaries we must
require

T+h = F% 2.8
The solution of (2.6){2.8) is easily obtained, being
U(y) = BRay (2.9

Ty = —y + $* Raldy — .

This solution is valid asymptotically, ie when the
ratio of the depth {o the length approcahes zero.

Formally # and Ra are independent parameters.
It is obvious, however, that the solution (2.9) is not
stable for all values of these parameters. For example,
when Ra is sufficiently increased, convection will
occur, and a secondary flow develops. However,
there is also another point which should not be over-
fooked. It is well known that for Darcy’s law to be
valid in its present form, the (particle) Reynolds
number should not exceed unity.
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We define a Reynolds number

I*
~ max™%

Re = - (2.10)

v
where d is the characteristic (dimensional) grain
diameter. Substituting U*,,, = PRax,/2h from (2.1)

and (2.9), we get as a necessary condition for (2.9) to be
valid that

21. - 0. 314y
pRa < er\g} 2.11)

where Pr is the Prandtl number.
For the vertical heat flux due to the basic flow we
obtain from (2.9)

H,=

er
- (m) =14+ &f*Ra. (212
ay y=-%

From this we notice that the presence of § increases
the heat transfer.

3. PERTURBATION ANALYSIS
Perturbating the velocity, temperature and pressure
fields, the resulting field variables may be written

v = U(,V)i + 6(x’ .z, t)

8= TQ) — Bx + Bx,y,2,0) 3G.D

= Ply 1 4_61 v 2 1)
=X, Yi Rs ¥y vty

"o

where P(x, y) is pressure in the basic flow.
From (2.2) we obtain

Vp + v — Rafj =0 (3.2

where the carets have been dropped. We observe that
J(Vxov)=0 Since we also have V-v =0, the
velocity is a poloidal vector and can be expressed by

a single scalar function i as
v=Vx (V xjy)=Ay (3.3)

or explicitly

Vi, .

where V2 is the twn-dlmpnmnnal 1 anlamnn

L3R 8 0 L oial AkAd.

{wo,wt = {¥ — (349

|
§= — EWW. (3.5
Introducing y into the heat equation, we finally
obtain
V4% + RaViy = V3, + BRa[UVZY, + ¥}
+ B*Ra*DOVIY + Ay - YV 3.6
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where the operator Ais defined by (3.3), and the bound-
ary conditions being that

Y=V =0 fory= +i 3.7
Further we have defined
= U(y)/BRa =y (3.8

© =(Ty) + yY/B*Ra =y — »°).

For 8 = 0,(3.6) reduces to the equation for ordinary
Bénard convection in a porous medium, a probiem
which is well known. The inclusion of a horizontal
temperature gradient, however, complicates the prob-
lem considerably. In the present paper we shall there-
fore restrict ourselves by assuming that § is a small

narameter. Ag nanQ"v in nroblems of thig type, we
parameier. pr this

consider infinitesimal perturbatxons. Neglectmg terms
of order ¢* in (3.6), and introducing

¥ = §(y) exp (ilkx + mz) + at) (3.9

where k and m are real wave numbers in the x- and
z-direction, respectively, and o = o' + io’ is the
complex growth rate, the perturbation equation may
be written

{(D? — a®)? — 0*Ra‘} = a(D? — a?)

+ ikBRa*{U(D* — o) + D} — (2fRa)*DOY
(3.10)
to be solved subject to
=DM =0 fory= +1 (311

Here « is the horizontal overall wave number defined
by a2 =k* + m? and Ra the critical Rayleigh
number corresponding to the onset of convection.
The solutions will be obtained by a series expansion
after p as a small parameter, as in [37]. This procedure
is analogous to those previously applied in [5] for
convection in Couette flow and in [6] for convection

in a tilted slot.
We introduce the series expansions
. o= = =
v=) B¥, Ra*=3} PR, k=) p%,
n=0 n=0 n=0
2 o
= % Fm o= Y Pfo, (312
n=0 n=0

where f, = D3}, = Ofory = +4.

By substituting these expansions into (3.10) and
equating equal powers of g, an infinite set of inhomo-
geneous differential equations is obtained. R,, R,,
R,, ... are found from the solvability conditions for
these equations, and the wave number terms ki,
mg, ky, my ... are determined so that they minimize
the critical Rayleigh number.
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We may do some preliminary simplifying obser-
vations. Changing the sign of § in (2.5) merely leads
to a reverse of the direction of the basic flow. Physically
this cannot alter the stability conditions, ie. the
critical Rayleigh number and the corresponding
wave number. Hence Ra‘, k and m should not contain
odd powers of 8, or

i=012...(313)

Ryivy = kyinqg =m0y =0,

We consider the transition from stable to unstable
solutions. This transition goes through a neutral
state, characterized by ¢” = 0. Generally we cannot
prove that the principle of exchanges of stabilities
(PES) is valid, i.e. that the neutrally stable solutions
are stationary. However, when § is small enough for
the series (3.12) to converge, this can be proved. For
the zero-order system (8 = 0), PES is obviously valid,
implying of, = 0. Further the solution must be
even, since the boundary conditions are. Owing to the
uneven character of the operator (U(D? — a? + D)
appearing on the right of (3.10), and the fact that
R4 must be real, we immediately obtain from the
solvability condition in the following orders that
o% = 0,05 = 0and so on. Hence oscillatory instability
does not occur, and we may put ¢ = 0 in (3.10).

The set of equations obtained from (3.10) with § as
ordering parameter are given in the appendix.

The zeroth-order system corresponds to convection
without shear, and the solution may be written

o = Acosny (3.14)
giving a minimum Rayleigh number
Ry =4n® for o =ki+mi=n (315

The zeroth-order system is easily shown to be self-
adjoint. Hence the condition for the higher order
equations to have a non-trivial solution may be
stated as

BoLif,y =0, (3.16)

where the brackets denote integration fromy = —{to
y = +3, and the operator L is defined by (A.1).

In order to avoid the arbitrary homogeneous
solution which always can be added in each order,
we choose as a normalization condition

o> =14

Hence, from (3.14), A = 1.
From (A.2) the evaluation of the first order solution
is straightforward, giving

n=123...

(3.17)

ko T, 5 .
l}1=i—-2— — gSinmy + yeosmy + my*sinny |
(3.18)

Applying the solvability condition to the second-
order equation (A.3), we obtain
R, = 4n? + 3k (3.19)

Thus we observe that a disturbance given by ky, = 0,
and hence my = n, minimizes R,. This particular
disturbance defines a longitudinal roll. Then, in a
physical problem, as the critical Rayleigh number is
approached from below, a longitudinal roll first
starts to grow exponentially. Accordingly it constitutes
the preferred mode among the infinite number
initially present.

Unfortunately, the first term on the right-hand
side in (A.3), being proportional to a2, vanishes
identically. We therefore must proceed to fourth order
to obtain a correction on the critical wave number.

Substituting (3.19) into (A.3), we may calculate
W¥,, which is an clementary, but lengthy task. The
result is given in the appendix.

Since we already have shown that longitudinal rolls
will be preferred, it is physically relevant to put
ko = 0 in the remaining analysis. This means J; = 0.
The third-order equation then reduces to that
previously derived in first order when substituting k,
for ky. Accordingly the solution may be written
¥y = %3 [— gsinny + ycosmy + my? sinm].

(3.20)

Applying now the solvability condition (3.16) to
the fourth-order equation (A.5), we obtain after some

algebra
n? 1 Tn?
Ry=4m} + R} | —=+-— {31 - —
AR [350 161:2( 3 )
? tgh (n(\/3)/2) (3.21)
— ————tgh(n . .
163 ©
From this it follows that R, has a minimum for m, =

0. Accordingly, the critical Rayleigh number to fourth
order may be written

Ra® = 4m(1 + B% + 1.738% + ..) (3.22)
and the critical wave numbers
— 2
k= 0(6% (3.23)
m = + 0(8%.

We observe that Ra® is always larger than for
ordinary convection in a porous medium. Physically
this is due to the presence of warm fluid above cold
fluid in the basic flow.
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4, ENERGY CONSIDERATIONS

In order to gain some physical insight into why
longitudinal rolls should be preferred, we consider the
equation for the kinetic energy of the perturbation.
In a porous medium shear instabilities do not occur
owing to the lack of inertial terms in the equation for
momentum transfer. The mechanism selecting the
preferred mode must then be purely thermal.

Taking the real part of (3.2), multiplying by the
real part of v, averaging over a wave length in the
x- and z-directions, and integrating from y = —1 to
y = +%, using the boundary conditions, we readily
obtain

{(v*> = Ralv) 4.1

where the bar and the brackets denote mean and
vertical integration, respectively.

This equation expresses a balance in the pertur-
bation energy between the gain from potential
energy and the loss by the viscous dissipation. In a
porous medium, however, the latter is directly
proportional to the averaged kinetic energy of the
perturbation. Hence we may write

KE = §0?) = $Raob)> = KVIYVY)
where we have substituted from (3.4) and (3.5).

To second order in the marginal stable solutions,
the above expression reduces to

4.2

4

2
KE = ’:— — B (AD? - T,

T 4.3)

From (3.18) it follows that i/} may be written
Ui = koF(y) where F(+3) = D’F(+3) =0. (44
Accordingly

ot n?
KE = - B Tkf,((mv)2 + 72F%). (4.5

The last term is obviously positive. Hence we may
conclude that, among all marginally stable solutions,
the preferred mode (ko = 0) will have minimum
kinetic energy (or, more precisely, minimum dissi-
pation). Since KE is directly proportional to the
released potential energy, we further conclude that the
preferred mode is characterized by minimum potential
energy. Equivalently, that particular mode which
involves least possible energy conversion, will be
selected.

5. FINITE AMPLITUDE SOLUTION
In the previous sections we have demonstrated that
a preferred mode of disturbance is predicted from
linear theory. Since this particular disturbance is
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the fastest growing, it also will dominate the motion at
slightly supercritical Rayleigh numbers, suppressing
the growth of other unstable modes in this region.
Accordingly, we look for a stationary solution of the
nonlinear problem considering longitudinal modes
only.

Setting ¢/0t = ¢/éx = 0, (3.6) reduces to

V4 + RaViy = B*Ra*DOV3y + Ay - VVA.  (5.0)

This equation will be solved by a two-parameter
expansion, and the solution may be written

«x

y= 3

m=1,n=0

émﬂnlll(m") (52)
provided the series converge. Since f§ appears only as
squared in (5.1), the summation can be taken over
even n. The parameter ¢ will be defined by

, Ra-—Ra

€ =—

Ra

(5.3

which is analogous to the definition originally
proposed by Kuo [7] for a similar problem. In the
present case, however, Ra¢ is a function of 8, given by
(3.22). We note that ¢ is always less than one.
Equation (5.3) may also be written
Ra¢

Ra = A= Ra* + Ra{(E + ¢ + ...+ &) (549
—€

where

Ra¢ = Ra‘/(1 -~ ¢*). (5.5
When solving to second order, we choose s = 1, to
fourth order s = 2 and so on. By writing Ra as a
“finite” sum, we are, to every order, working with a
correct Rayleigh number. It appears that this pro-
cedure highly improves the convergence of the
solution (Kuo [7], Palm et al. [8]).

Substituting the expansions (5.2) and (5.4) into
(5.1) and using ¢ and B as ordering parameters, we
obtain an infinite set of equations. In this procedure
¢ and f appear as given small parameters. Expanding
the amplitude 4 of the solution after ¢ and B, the
A, will be determined at each order so as to satisfy
the solvability conditions.

To order ¢!, B° the y-dependence of the solution is
given by (3.14). For a longitudinal roll we then write

(5.6)

where we have chosen m = =, since this is the phy-
sically relevant wave number for Ra > Ra“.

The solution to order €2, 8° is easily obtained (see
the appendix for details). From (A.7) we find

Y19 = 4., cos ny cos nz
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ndio .
G sin 2ry.  (5.7)

Y29 = A,,cosmycosnz +

The result to order ¢°, B° has in fact been computed in
(8]

The unknown amplitudes are determined from the
solvability condition, giving

4 (Ry\*
A10=7'r R; ) A20=0

where Ry, = Ry/(1 — ¢29).

In the present paper we study the change of the
vertical heat transport due to the inclusion of a small
horizontal temperature gradient. By averaging the
stationary heat equation (2.4) and utilizing that v is
periodic, i.e. 7 = 0, we obtain by integration

A= ~(Db),-_, (5.9)

where H is the perturbation heat flux. Accordingly the
total vertical heat flux may be written

(5.8)

- 1
H:H,+H=1+15ﬁ2Ra
1 3
+ }z_a(D Py-—y  (510)

where we have substituted for H, and 0 from (2.12)
and (3.5), respectively.

In [8] the Nusselt number (which corresponds to
H(f = 0)) has been obtained to sixth order. However,
when the horizontal temperature dependence is
taken into account, the inhomogeneous differential
equations derived in each order, very soon become
unsuitable for analytical treatment. We shall therefore
not push the computations further than necessary to
obtain a correction on the second-order heat flux.
To achieve this goal, we must solve the system of
equations to order ¢, p2.

To order ¢!, f? the equation is identical to (A.3).
Including the z-dependence and adding a homo-
geneous solution, we may write

Y12 = A, cosmycosnz + Ao, cos iz (5.11)

where ¥, is given by (A.6) with k, = 0.

Having in mind the large number of terms in Y2,
the evaluation of ¥?? from (A.8) obviously is a long
and tedious task. However, it can be shown that
W, is approximated within a few percent by the first
term in a rapidly converging series expansion

N

Y €a4+1c08(2n + Dmy. It turns out that ¢c; = —3.
n=1
Accordingly we take
Y12 = A, cosmycosnz — ?:9 cos 3my cos nz

P4

(5.12)
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in the following analysis.
By substituting (5.12) into (A.8), we get

Ao
-3,

[4sin4ny + %sin2ny cos 2nz

22) n
Y'e? = 4,,cosmycosmz + 3 Ai0As2

2

. nAio
x sin 2@y —
128

+ 5 sin 4my cos 2nz] (5.13)

where we have utilized that 4,, = 0.
Applying the solvability condition to order ¢, 2,
see (A.9), we finally obtain

Ay = _1L6AIO- (5.14)

The fact that 4,, and A, have opposite sign, means
that the horizontal temperature gradient acts to
diminish the magnitude of the velocity. Physically
this is due to the stabilizing configuration in the basic
flow, where the average density in the upper part is
less than in the lower.

The perturbation heat flux to this order may now
be written

1 .
0= EZ [EzDalp(zm + €2B2D3lp(22)]y=—5- (5.15)

Substitution from (5.8), (5.13) and (5.14) yields

A= 2(59{)(1 _ gy
Ra

From this we observe that the presence of § reduces
the perturbation heat transport. However, as noted
from (2.12), B serves to increase the heat transfer due
to the basic flow. In total the latter effect predominates,

(5.16)

B=1r2
B=1/3

I | |
0 50 100
o Ra

FIG. 2. The total vertical heat flux H vs Ra for various values
of (dimensionless) S.
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and hence the heat flux is increased. This becomes
clear from Fig 2 where H = H, + A is plotted
against Ra for various values of . We then conclude
that the introduction of a small horizontal tempera-
ture gradient into the classic Bénard problem leads to
an increase of the total vertical heat flux. In the
calculation of H we have used s = 1, which gives the
best approximation to this order. The breaks in the
slope of the heat transport curves in Fig. 2 indicate
when convection commences, and the figure clearly
exhibits the stabilizing effect of f, as mentioned in
section 3.

6. SUMMARY AND CONCLUDING REMARKS

According to the results presented above, the
Rayleigh number at the neutral state will have a
minimum value for steady longitudinal rolls with axes
aligned in the direction of the basic flow. The critical
Rayleigh number will always be larger than that
corresponding to convection with uniform heating
from below. These conclusions are similar to those
reached in [3] for a viscous fluid in the limit of infinite
Prandtl number.

The instability is of thermal origin, and among the
marginally stable solutions the preferred mode has
minimum potential energy.

Assuming that the initially preferred mode alsc
dominates at moderately supercritical Rayleigh num-
bers, a stationary finite amplitude solution is obtained.
The vertical heat flux is examined to second order,
and a small horizontal temperature gradient £ is
found to diminish the vertical perturbation heat
transport. The heat transfer due to the basic flow is
increased, however, so the total vertical heat flux is an
increasing function of f.

Before closing, we note that by working with super-
critical Rayleigh numbers, rolls having axes tilted a
small angle to the basic flow become linearly unstable.
Such modes may be considered as perturbations to
our stationary solution. When f is zero, it can be
shown analogously to [9] that the stationary roll is
stable. For non-zero f the stability problem becomes
more complex, and should probably be attacked
numerically. This will be left for future work,
however.

Finally we remark that the inclusion of lateral
side-walls may influence the selection of mode.
Presumably an increase of the aspect ratio (height to
length) should favour transverse rolls, ie. rolls with
axes normal to the basic flow,
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APPENDIX

By substituting (3.12) into (3.10), we derive the following
set of equations

0(B%:Lifo = {(D* — ad)* — a3Ro}o = 0 (A1)
0(BY):Lf, = ikoRy{ UD?* - od) + D}'/’o (A2)
0(8%):Lfi, = {a3(2D* — a2) + R,) + 2R,

_O‘gRgDé}'po + ikoRo{U(D2 —a) + D}‘L
(A3)
vihere a2 = 2(kok, + momy).

Assuming k, = 0 (longitudinal rolls) we further obtain

0(B%):Lif 5 = ikyRo{U(D* — of) + Do (A%
O(B%) L, = {203(D* ~ of) + 03R, — of + oa}R,
+ a3R, — «2REDO — 20iR,R,DO},
+ {263(D? ~ ad) + «2R, + a2R,
- “oRzDQ}‘/’z (A.5)

where now ao—mo—ﬁ, o} = 2mym,. o? =k +m+
2mem, and R, = R, = 4n°.

These equations are subject to the boundary conditions
¥, = D*J, =0at y = +4 The solutions of (A.1) and (A.2)
are given by (3.14) and (3.18), respectively, while (A.3) is
evaluated to give

V2 = a; cosmy + a, cosh [n(/3)y] + asysinny

+ asy*cosmy + asy®sinmy + agy* cos ny

a_nz 3+k(2)(77t2+1 7>‘
T2 a7 16\120 6 w2/

(A.6)

where
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2 2 BN ar(22) _ (_ 2DYT24(20
a, = — (E — %.)/cosh [n(/3)/21, e 5y My (=R + ReDOWLY

4 + Alﬁ(w) . szl/,(lz)
3 2 2
a4 % _ K (2 i T;_) + AYID. yy2yao . (A8)
A N Oe, 2): MY = (= Ry, + 2RoRo,DEVHY
2 —
P PR — RoVHYU? + (=R, + RADOVIYD
16 + Al/l“o)' VVZII/(ZZ) + All/(ZZ)_VVZwHO)
3 kin kin? 12 220
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By substituting (5.2), where ™ = V3™ = Qaty = T}
into (5.1), we obtain

0(62. ﬂO) :1\41//‘20) = (V4 + ROV%)l/,(ZO) - Al/l“o) . Vv2w(10)

where R, = Ry, = Ry/(1 — ¢*).

AT (5.13), respectively.

CONVECTION DANS UN MILIEU POREUX AVEC DES GRADIENTS DE
TEMPERATURE HORIZONTAUX ET VERTICAUX

Résumé—On étudie la stabilité de la convection dans une couche poreuse horiZontale soumise aussi bien
a des gradients de température horizontaux que verticaux. Les frontiéres sont choisies parfaitement
conductrices et on suppogse petit le gradient de température horizontal. L’analyse montre que le nombre
de Rayleigh critique est toujours plus grand que dans le probléme ordinaire de Bénard dans un milieu
poreux. Le mode préfére de perturbation est stationnaire, avec des rouleaux longitudinaux, ayant des axes
alignés dans la direction de I"écoulement de base. Ce mode particulier minimise 1'énergie potentielle. En
supposant que le mode préféré initialement est aussi dominant aux nombres de Rayleigh supercritiques,
on obtient une solution 4 amplitude finie. Le flux de chaleur vertical est calculé au second ordre. Comparé
a la convection de Bénard dans un milieu poreux, le flux thermique de perturbation est diminué. Le flux
dii 4 ’écoulement de base est augmenté de telle sorte qu'il en résulte un flux thermique vertical accru.

KONVEKTION IN EINEM POROSEN MEDIUM MIT HORIZONTALER UND
VERTIKALER TEMPERATURANDERUNG

Zusammenfassung— Es wird die Stabilitdt der Konvektion in einer horizontalen pordsen Schicht unter-
sucht, die sowohl von horizontalen als auch von vertikalen Temperaturinderungen abhingig ist. Die
Riénder sollen vollkommen leitend sein und die horizontale Temperaturinderung soll klein sein. Die
Analysis zeigt, dass die kritische Rayleigh-Zahl immer grosser ist als die fiir das gewShnliche Benard-
Problem in einem pordsen Medium. Die bevorzugte Art der Strmung ist stationir, da es sich um Longitu-
dinal-Wirbel handelt, d.h. Wirbel deren Achsen in Grundstrémungsrichtung liegen.

Diese besondere Art bringt die potentielle Energie auf ein Minimum. Vorausgesetzt, dass die anfangs
bevorzugte Artauch bei superkritischen Rayleigh-Zahlen dominiert, erhilt man eine endliche Amplituden-
Losung. Der vertikale Wirmestrom wird bis zur zweiten Ordnung berechnet. Verglichen mit der Benard-
Konvektion in einem pordsen Medium wird der Strémungswiirmestrom vermindert. Ist jedoch der Strom

infolge der Basisstromung verstirkt, so wird die gesamte vertikale Wirmestrémung verstirkt.

KOHBEKINA B I[IOPUCTON CPEJE C I'OPU3OHTAJLHBLIMUA U
BEPTUHAJILHBIMU I'PAJVMEHTAMU TEMIIEPATVPLI

Andoranua—IUlccienyerca ycToiunBOCTh KOHBEKIIMN B TOPM3OHTAJBHOM MIOPHCTOM CJI0€ IMPH
HAJINYUM KAK FOPU30HTAJbHBIX, TAK M BEPTUKAJbHHWX I'pAJUEHTOB TeMIlepatypsl. ['paHuust
CUMTAIOTCA UACANLHO NPOBOAAIIMMU, & TOPUBOHTAIbHEIA IPagueHT TeMNepaTypHl MpeanoJa-
raeTCA He3HAYNMTEJILHBIM. AHAIN3 IOKA3BIBACT, UTO KPUTHUECKOE UnCIo Pesea B aToM ciaydae
Bcerpga 6omnblile, 4eM B ciyd4ae IpocTolf 3amauu BeHepa ans mopcuroit cpejsl. IlpeoGaanaer
CTAlMOHAPHHII pe:KuM BOBMYILEHNI B BUJe NPOAONBHBEIX BAJIOB, T.¢. BAJOB, OCH KOTOPBIX
HalpaBJeHbl BIOJb OCHOBHOTO TedeHud. VIMeHHO mpy TakoMm Buje TedeHUH NMOTeHNMAIBbHASA
BHeprusA MMHMMAJbHa. B npeanoioskeHMM, YTO HTOT PeXMM TakKe IpeoOaajgaer NpHu
CBEPXKPHTUYECKUX 4Hciaax Penes, mosydeHo pelleHne AJA KOHEYHOil aMnauTyabl. Bepru-
KaJAbHBI TelIOBOIl MOTOK PACCUMTAH [0 BToporo nopanka. Ilo cpaBHeHHI0 ¢ KOHBeKIHel
Benapa B mopucToil cpene BO3MYUIEHHHN TeNI0BOH MOTOK I JAaHHOM cayuae cialee. OpgHaxo
TeIJIOBO}i TMOTOK BCIIEICTBHE OCHOBHOrO TeYeHHA BO3pacraeT, 4To AaeT O0IbHIMI CyMMapHBIA
TeNnJI0BOil NOTOK.

(A9)

The solutions of (A.7) and (A.8) are given by (5.7) and



